54

Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3

Kumar, K. V., Srivastava, S., Singh, N., & Behl, H. M., (2009). The role of metal resistant

plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea.

J. Hazard Matter., 170, 51–57.

Ma, Y., Rajkumar, M., Zhang, C., & Freitas, H., (2016). Inoculation of Brassica oxyrrhina with

plant growth promoting bacteria for the improvement of heavy metal phytoremediation under

drought conditions. J. Hazard Mater., 320, 36–44. doi: 10.1016/j.jhazmat.2016.08.009.

Miller, G., Suzuki, N., Ciftci-Yilmaz, S., & Mittler, R., (2010). Reactive oxygen species

homeostasis and signaling during drought and salinity stresses. Plant Cell Environ., 33,

453–467.

Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A., & Ashraf, M., (2014). The role of

mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop

productivity under stressful environments. Biotechnol. Adv., 32, 429–448.

Navarro, J. M., Pérez-Tornero, O., & Morte, A., (2014). Alleviation of salt stress in citrus

seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt

tolerance. J. Plant Physiol., 171, 76–85.

Nawrocka, J., & Małolepsza, U., (2013). Diversity in plant systemic resistance induced by

Trichoderma. Biol. Control., 67, 149–156.

Ruiz-Lozano, J. M., Aroca, R., Zamarreño, A. M., Molina, S., Jiménez, B. A., Porcel, R.,

García-Mina, J. M., et al., (2016). Arbuscular mycorrhizal symbiosis induces strigolactone

biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant

Cell Environ., 39, 441–452.

Safdarian, M., Askari, H., Shariati, J., & Nematzadeh, G., (2019). Transcriptional responses

of wheat roots inoculated with Arthrobacter nitroguajacolicus to salt stress. Sci. Rep., 9,

1792. https://doi.org/10.1038/s41598-018-38398-2.

Salas-Marina, M. A., Silva-Flores, M. A., Uresti-Rivera, E. E., Longoria, E. C., Estrella, A.

H., & Flores, S. C., (2011). Colonization of Arabidopsis roots by Trichoderma atroviride

promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene

and salicylic acid pathways. Eur. J. Plant Pathol., 131, 15–26.

Shoebitz, M., Ribaudo, C. M., Pardo, M. A., Cantore, M. L., Ciampi, L., & Curá, J. A., (2009).

Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium

perenne rhizosphere. Soil Biol. Biochem., 41, 1768–1774.

Shrivastava, P., & Kumar, R., (2015). Soil salinity: A serious environmental issue and plant

growth promoting bacteria as one of the tools for its alleviation, Saudi J. Biol. Sci., 22,

123–131.

SkZ, A., Vardharajula, S., & Vurukonda, S. S. K. P., (2018). Transcriptomic profiling of maize

(Zea mays L.) seedlings in response to Pseudomonas putida stain FBKV2 inoculation under

drought stress. Ann. Microbiol., 68, 331–349.

Spence, C., & Bais, H., (2015). The role of plant growth regulators as chemical signals in

plant-microbe interactions: A double edged sword. Curr. Opin. Plant Biol., 27, 52–58.

Suarez, C., Cardinale, M., Ratering, S., Steffens, D., Jung, S., Zapata, A., Geissler-Plaum, R.,

& Schnell, S., (2015). Plant growth-promoting effects of Hartmannibacter diazotrophicus

on summer barley (Hordeum vulgare L.) under salt stress. Appl. Soil Ecol., 95, 23–30.

10.1016/j.apsoil.2015.04.017.

Tiwari, S., Lata, C., Chauhan, P. S., & Nautiyal, C. S., (2016). Pseudomonas putida attunes

morphophysiological, biochemical and molecular responses in Cicer arietinum L. during

drought stress and recovery. Plant Physiol. Bioc., 99, 108–117.