54
Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3
Kumar, K. V., Srivastava, S., Singh, N., & Behl, H. M., (2009). The role of metal resistant
plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea.
J. Hazard Matter., 170, 51–57.
Ma, Y., Rajkumar, M., Zhang, C., & Freitas, H., (2016). Inoculation of Brassica oxyrrhina with
plant growth promoting bacteria for the improvement of heavy metal phytoremediation under
drought conditions. J. Hazard Mater., 320, 36–44. doi: 10.1016/j.jhazmat.2016.08.009.
Miller, G., Suzuki, N., Ciftci-Yilmaz, S., & Mittler, R., (2010). Reactive oxygen species
homeostasis and signaling during drought and salinity stresses. Plant Cell Environ., 33,
453–467.
Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A., & Ashraf, M., (2014). The role of
mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop
productivity under stressful environments. Biotechnol. Adv., 32, 429–448.
Navarro, J. M., Pérez-Tornero, O., & Morte, A., (2014). Alleviation of salt stress in citrus
seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt
tolerance. J. Plant Physiol., 171, 76–85.
Nawrocka, J., & Małolepsza, U., (2013). Diversity in plant systemic resistance induced by
Trichoderma. Biol. Control., 67, 149–156.
Ruiz-Lozano, J. M., Aroca, R., Zamarreño, A. M., Molina, S., Jiménez, B. A., Porcel, R.,
García-Mina, J. M., et al., (2016). Arbuscular mycorrhizal symbiosis induces strigolactone
biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant
Cell Environ., 39, 441–452.
Safdarian, M., Askari, H., Shariati, J., & Nematzadeh, G., (2019). Transcriptional responses
of wheat roots inoculated with Arthrobacter nitroguajacolicus to salt stress. Sci. Rep., 9,
1792. https://doi.org/10.1038/s41598-018-38398-2.
Salas-Marina, M. A., Silva-Flores, M. A., Uresti-Rivera, E. E., Longoria, E. C., Estrella, A.
H., & Flores, S. C., (2011). Colonization of Arabidopsis roots by Trichoderma atroviride
promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene
and salicylic acid pathways. Eur. J. Plant Pathol., 131, 15–26.
Shoebitz, M., Ribaudo, C. M., Pardo, M. A., Cantore, M. L., Ciampi, L., & Curá, J. A., (2009).
Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium
perenne rhizosphere. Soil Biol. Biochem., 41, 1768–1774.
Shrivastava, P., & Kumar, R., (2015). Soil salinity: A serious environmental issue and plant
growth promoting bacteria as one of the tools for its alleviation, Saudi J. Biol. Sci., 22,
123–131.
SkZ, A., Vardharajula, S., & Vurukonda, S. S. K. P., (2018). Transcriptomic profiling of maize
(Zea mays L.) seedlings in response to Pseudomonas putida stain FBKV2 inoculation under
drought stress. Ann. Microbiol., 68, 331–349.
Spence, C., & Bais, H., (2015). The role of plant growth regulators as chemical signals in
plant-microbe interactions: A double edged sword. Curr. Opin. Plant Biol., 27, 52–58.
Suarez, C., Cardinale, M., Ratering, S., Steffens, D., Jung, S., Zapata, A., Geissler-Plaum, R.,
& Schnell, S., (2015). Plant growth-promoting effects of Hartmannibacter diazotrophicus
on summer barley (Hordeum vulgare L.) under salt stress. Appl. Soil Ecol., 95, 23–30.
10.1016/j.apsoil.2015.04.017.
Tiwari, S., Lata, C., Chauhan, P. S., & Nautiyal, C. S., (2016). Pseudomonas putida attunes
morphophysiological, biochemical and molecular responses in Cicer arietinum L. during
drought stress and recovery. Plant Physiol. Bioc., 99, 108–117.